AtkinsRéalis

Rapport final

Transports Canada

17 mars 2025

O/Réf.: 702490-4E-L02-00

Courbes d'ambiance sonore de 2023 Aéroport Billy-Bishop de Toronto

Avis

Ce rapport et les travaux qu'il présente ont été réalisés par AtkinsRéalis Canada Inc. à l'usage exclusif de **Transports Canada** (« le client »), qui a pris part à la définition de l'étendue des travaux et qui en comprend les limites. Les méthodes, constatations, conclusions et recommandations figurant dans ce rapport sont fondées uniquement sur la portée des travaux et sont tributaires des contraintes de temps et de budget décrites dans la proposition ou dans le contrat en vertu duquel ce rapport a été publié. Toute utilisation du rapport ou décision prise par une tierce partie en fonction de ce rapport est la seule responsabilité de ladite tierce partie. AtkinsRéalis se dégage de toute responsabilité à l'égard de tous dommages pouvant être subis ou encourus par une tierce partie à la suite de l'utilisation du présent rapport ou de toute décision fondée sur ce rapport.

Les constatations, conclusions et recommandations figurant dans ce rapport ont été élaborées conformément au niveau d'expertise normalement exercée par les professionnels qui œuvrent actuellement dans des conditions similaires. De plus, elles reflètent le meilleur jugement d'AtkinsRéalis compte tenu des renseignements disponibles au moment de la préparation du rapport. Aucune autre garantie, explicite ou implicite, n'est faite quant aux services professionnels fournis au client ou en ce qui concerne les constatations, les conclusions et les recommandations contenues dans ce rapport. Les constatations et conclusions contenues dans ce rapport sont valides seulement à la date du rapport et peuvent être fondées en partie sur des renseignements fournis par des tiers. Si des renseignements sont inexacts, si de nouveaux renseignements sont découverts ou si les paramètres du projet changent, il pourrait être nécessaire de modifier ce rapport.

Ce rapport doit être lu dans son ensemble, car les sections prises hors contexte peuvent être trompeuses. Si des écarts sont constatés entre la version préliminaire (provisoire) et la version finale du rapport, c'est la version finale qui a préséance. Rien dans ce rapport ne vise à constituer ou à fournir un avis juridique.

Le contenu de ce rapport est confidentiel et exclusif. La copie ou la distribution de ce rapport ou l'utilisation des renseignements qui y figurent, en tout ou en partie, par toute partie autre que le client, sont interdites sans la permission écrite expresse du client et d'AtkinsRéalis.

O/Réf.: 702490-4E-L02-00

Page de signatures

Préparé par :

Jacques Savard, M.Sc.

Chef d'équipe, Acoustique et vibrations

Environnement Services d'ingénierie

Revu par:

Nicolas Garcia, ing. (OIO nº 100509769)

Acoustique et vibrations

Environnement Services d'ingénierie

O/Réf.: 702490-4E-L02-00

Table des matières

Somma	aire		V
1.	Intro	duction	1
2.	Méth	odologie	1
	2.1	Mesures et paramètres	1
	2.2	Méthode de calcul	1
3.	Cour	bes d'ambiance sonore	2
	3.1 3.1.1 3.1.2 3.1.3	Hypothèses de calcul	2 4
	3.2	Résultats	8
4.	Conc	lusion	11
5.	Biblio	ographie	11
l iste	des	tableaux	
		Journée de planification de pointe avec hélicoptères	3
		Journée de planification de pointe sans hélicoptères	
Tableau	ı 3-3	Utilisation des pistes par catégorie d'aéronefs	7
Tableau	ı 3-4	Catégories d'aéronefs	7
Tableau	ı 3-5	Superficie (km²)	11
Liste Figure 3		figures Identification des pistes	5
Figure 3	3-2	Résumé de la composition de la flotte	5
Figure 3	3-3	Résumé de l'utilisation des pistes	6
Figure 3	3-4	Courbes NEF avec hélicoptères	9
Figure 3	3-5	Courbes NEF sans hélicoptères	10

O/Réf.: 702490-4E-L02-00

UNCLASSIFIED / NON CLASSIFIÉ

Liste des annexes

Annexe A. Composition de la flotte

Annexe B. Résumé des mouvements

O/Réf.: 702490-4E-L02-00

Sommaire

Les courbes d'ambiance sonore de l'Aéroport Billy-Bishop de Toronto (ci-après appelé « l'aéroport ») ont été calculées à partir de la méthodologie employée par Transports Canada (ci-après appelée « méthodologie ») pour calculer les prévisions d'ambiance sonore (NEF) ainsi que la superficie à l'intérieur des courbes.

L'accord tripartite (« l'accord ») impose une limite quant à l'expansion des courbes NEF. Aux articles 14 et 27 de l'accord, on exige que la courbe NEF 28 ne s'étende pas au-delà de la courbe NEF 25 officielle de 1990, sauf entre les points X et Y. Si la courbe NEF 28 se prolonge au-delà de la courbe NEF 25 officielle de 1990, les mouvements des aéronefs doivent être contrôlés de manière à ramener la courbe NEF 28 à l'intérieur de la courbe NEF 25 officielle de 1990.

L'analyse montre que la courbe NEF 28 pour 2023, qui comprend les hélicoptères dans le calcul, ne s'étend pas audelà de la courbe NEF 25 officielle de 1990.

Lorsque les hélicoptères sont exclus du calcul, les courbes NEF rétrécissent légèrement et ne s'étendent pas au-delà de la courbe NEF 25 officielle de 1990.

Le tableau i montre les superficies à l'intérieur des courbes d'ambiance sonore.

NEF	Superficie (km²)							
	Avec hélicoptères	Sans hélicoptères						
Plus de 35	0,2	0,2						
De 30 à 35	0,5	0,4						
De 28 à 30	0,3	0,3						
De 25 à 28	0,9	0,9						
Total	1,9	1,8						

O/Réf.: 702490-4E-L02-00

1. Introduction

Ce document présente les courbes d'ambiance sonore de 2023 pour l'Aéroport Billy-Bishop de Toronto (« l'aéroport »).

Le bruit d'ambiance ou le bruit urbain, notamment les activités aéroportuaires, n'est pas réglementé par le gouvernement canadien. Néanmoins, la méthodologie de Transports Canada est la norme employée pour évaluer le bruit perçu à proximité des aéroports. Cette méthodologie a été instaurée à l'échelle du pays et est utilisée dans le cadre de cette étude. L'interprétation des résultats produits permettra d'établir l'ampleur (« l'intensité du bruit ») et l'étendue (« la superficie ») des zones touchées par le bruit des aéroports.

2. Méthodologie

2.1 Mesures et paramètres

La représentation du bruit généré par l'exploitation des aéroports a été normalisée par Transports Canada au moyen des courbes de prévision d'ambiance sonore (NEF). La méthodologie de NEF n'est pas en soi une prévision, mais un calcul du bruit fondé soit sur une prévision des mouvements futurs, soit sur les mouvements réels. La courbe d'ambiance de 2023 présentée dans ce rapport a été produite à partir de la méthodologie de NEF d'après des données de mouvements réels reçus de Transports Canada.

L'indice produit à partir des courbes d'ambiance sonore révèle les zones touchées par le bruit de l'aéroport. Cette cote à numéro unique est facile à interpréter, mais elle nécessite néanmoins un processus d'évaluation complexe. Cette cote tient compte de chaque mouvement tout au long de l'année, du type d'aéronefs, de l'utilisation des pistes, du corridor aérien, de la distance de vol et de la période du jour. À noter que la nuit correspond à la période allant de 22 h à 7 h.

Les distances de vol et les directions des corridors aériens de départ ont été établies à partir des coordonnées géographiques des aéroports de destination provenant de la base de données et des publications spécialisées de Transports Canada.

On a employé le document « Indicatifs de la circulation aérienne » (TP 143) publié par Transports Canada, des bases de données spécialisées publiées par des entreprises du secteur aéronautique ainsi que des bases de données internes d'entreprises afin de déterminer les caractéristiques d'aéronefs.

2.2 Méthode de calcul

Le logiciel NEF-Calc 2.0.6.1 a été utilisé pour la production des courbes d'ambiance sonore. Ce logiciel a été mis au point par le Conseil national de recherches pour Transports Canada. Il traite les données liées aux opérations des aéroports et calcule les niveaux de bruit du réseau récepteur. Les courbes d'exposition au bruit sont ensuite tracées pour l'ensemble de la zone d'étude.

O/Réf.: 702490-4E-L02-00

Le logiciel ne comprend pas les données sonores pour l'aéronef DASH-8 Q400. Les données sur le bruit et le rendement du DASH-8-300 ont été utilisées comme substitut. Cette hypothèse peut avoir une incidence majeure sur les courbes d'ambiance sonore, en particulier lorsqu'on sait que le DASH-8 Q400 est l'aéronef le plus représenté quant au nombre annuel de mouvements, avec 39 % de tous les mouvements en 2023.

La méthodologie de NEF élaborée par Transports Canada utilise le paramètre « journée de planification de pointe », qui a été utilisé pour calculer les courbes d'ambiance sonore. On estime le nombre de mouvements de la journée de planification de pointe en calculant la moyenne des sept journées les plus achalandées des trois mois les plus achalandés de l'année. Le calcul détaillé de la journée de planification de pointe est présenté à la section 3.1.1. Les courbes d'ambiance sonore sont représentatives d'une période de 24 heures proche du pire des cas.

3. Courbes d'ambiance sonore

3.1 Hypothèses de calcul

On a utilisé la base de données des mouvements d'aéronefs de Transports Canada de 2023 pour l'aéroport afin de calculer la journée de planification de pointe. On a également calculé la composition de la flotte et l'utilisation annuelle moyenne des pistes à partir de la base de données de mouvements d'aéronefs.

3.1.1 Calcul de la journée de planification de pointe

Les **tableaux 3-1** et **3-2** présentent les résultats du calcul de la journée de planification de pointe pour les mouvements itinérants et locaux de 2023 pour l'aéroport.

On a constaté que le nombre de mouvements au cours de la journée de planification de pointe s'élève à 308 pour les mouvements itinérants et à 169 pour les mouvements locaux. En comparaison, les moyennes de 2023 sont de 203 mouvements itinérants et de 70 mouvements locaux par jour.

Le nombre de circuits équivaut à la moitié du nombre de mouvements locaux. Un mouvement correspond à une arrivée ou à un départ. Les survols sont exclus du calcul. Les survols sont des vols qui croisent la zone de contrôle de la tour de contrôle pour se diriger vers une autre destination sans atterrir à l'aéroport. On n'en tient pas compte dans les calculs, puisqu'ils ne comprennent aucune opération véritable à l'aéroport. À l'intérieur d'une journée, les mouvements locaux varient bien plus que les mouvements itinérants.

On a effectué le calcul des courbes d'ambiance sonore pour 308 mouvements itinérants et 169 mouvements locaux (85 circuits) pour un total de 477 mouvements d'aéronefs.

Les hélicoptères représentaient 10 541 mouvements en 2023, dont 2 044 étaient des opérations de piste, la plupart des vols effectués par Ornge à bord d'hélicoptères Agusta/Westland AW139 et 8 497 étaient des opérations dans l'aire de manœuvre d'hélicoptères, en majeure partie des promenades à bord d'hélicoptères Robinson R44.

Exception faite des mouvements d'hélicoptères, le nombre de mouvements au cours de la journée de planification de pointe s'élève à 242 pour les mouvements itinérants et à 169 pour les mouvements locaux. En comparaison, les moyennes de 2023 sont de 174 mouvements itinérants et de 70 mouvements locaux par jour.

O/Réf.: 702490-4E-L02-00

Tableau 3-1 Journée de planification de pointe avec hélicoptères

ltir	nérants	L	ocaux.
Date	Mouvements	Date	Mouvements
26 mai 2023	327	5 mai 2023	256
21 mai 2023	325	6 mai 2023	186
6 mai 2023	312	10 mai 2023	160
5 mai 2023	310	9 mai 2023	160
28 mai 2023	309	26 mai 2023	150
18 mai 2023	305	12 mai 2023	150
31 mai 2023	298	8 mai 2023	144
27 août 2023	334	18 juillet 2023	210
11 août 2023	330	19 juillet 2023	210
20 août 2023	327	14 juillet 2023	204
2 août 2023	301	28 juillet 2023	188
13 août 2023	294	27 juillet 2023	154
31 août 2023	285	17 juillet 2023	130
9 août 2023	283	22 juillet 2023	128
19 juillet 2023	337	9 août 2023	192
14 juillet 2023	330	28 août 2023	172
30 juillet 2023	315	25 août 2023	162
7 juillet 2023	300	21 août 2023	158
12 juillet 2023	296	20 août 2023	148
9 juillet 2023	281	16 août 2023	146
27 juillet 2023	260	14 août 2023	142

O/Réf.: 702490-4E-L02-00

Tableau 3-2 Journée de planification de pointe sans hélicoptères

Itiné	rants	L	-ocaux	
Date	Mouvements	Date	Mouvements	
5 mai 2023	265	5 mai 2023	256	
10 mai 2023	259	6 mai 2023	186	
18 mai 2023	256	10 mai 2023	160	
26 mai 2023	254	9 mai 2023	160	
23 mai 2023	254	26 mai 2023	150	
22 mai 2023	251	12 mai 2023	150	
9 mai 2023	249	8 mai 2023	144	
9 août 2023	267	18 juillet 2023	210	
11 août 2023	253	19 juillet 2023	210	
22 août 2023	244	14 juillet 2023	204	
28 août 2023	232	28 juillet 2023	188	
27 août 2023	229	27 juillet 2023	154	
20 août 2023	228	17 juillet 2023	130	
29 août 2023	224	22 juillet 2023	128	
20 septembre 2023	245	9 août 2023	192	
22 septembre 2023	242	28 août 2023	172	
13 septembre 2023	239	25 août 2023	162	
29 septembre 2023	226	21 août 2023	158	
19 septembre 2023	226	20 août 2023	148	
5 septembre 2023	223	16 août 2023	146	
14 septembre 2023	222	14 août 2023	142	

3.1.2 Composition de la flotte et utilisation des pistes

Les données sur la composition de la flotte pour toutes les opérations à l'aéroport en 2023, y compris les opérations des hélicoptères, sont présentées à l'**annexe A**. Le document TP 143 – Indicatifs de la circulation aérienne de Transports Canada, la base de données d'immatriculation des aéronefs de Transports Canada et les bases de données commerciales sont les principales sources d'information pour identifier les types d'aéronefs.

La **figure 3-1** montre la configuration des pistes fournie par le Canada Air Pilot. Les **figures 3-2** et **3-3** présentent un résumé de la composition de la flotte et des pistes de l'aéroport en 2023, le tout compilé à partir de la base de données sur les mouvements itinérants. Les données détaillées sont présentées à l'**annexe B**.

O/Réf.: 702490-4E-L02-00

Le nombre total de mouvements en 2023 atteignait 99 632, soit 74 148 mouvements itinérants et 25 484 mouvements locaux.

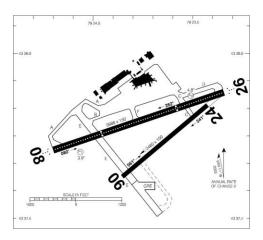


Figure 3-1 Identification des pistes

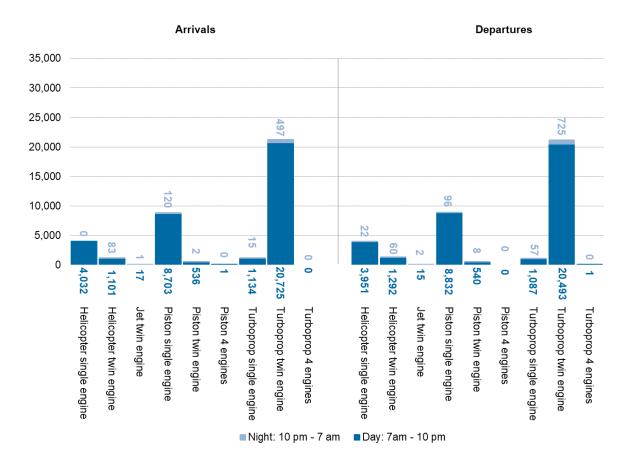


Figure 3-2 Résumé de la composition de la flotte

O/Réf.: 702490-4E-L02-00

Les mouvements réalisés pendant la nuit (de 22 h à 7 h) représentaient 2,0 % du nombre total de mouvements en 2023. Pour le calcul des courbes d'ambiance sonore à partir de la méthodologie, chaque mouvement la nuit équivaut à 16,67 mouvements le jour. Les 1 974 mouvements la nuit enregistrés en 2023 équivalent à 32 907 mouvements le jour. Les mouvements la nuit représentent une contribution importante aux courbes d'ambiance sonore.

Dans l'ensemble, le DASH-8 Q400 est l'aéronef le plus fréquent à l'aéroport, représentant 39 % de tous les mouvements. La catégorie des bimoteurs turbopropulseurs représente 43 % de tous les mouvements. La proportion de mouvements dans la catégorie des aéronefs monomoteurs à pistons (principalement les Cessna 150, 152 et 172) est de 43 %.

La **figure 3-3** présente un résumé de l'utilisation des pistes, alors que le **tableau 3-3** montre l'utilisation des pistes par catégorie d'aéronefs.

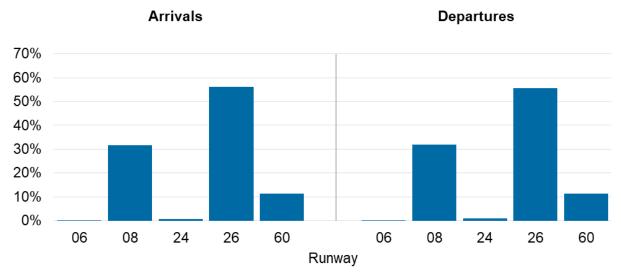


Figure 3-3 Résumé de l'utilisation des pistes

O/Réf.: 702490-4E-L02-00

Tableau 3-3 Utilisation des pistes par catégorie d'aéronefs

Piste	Nom	bre total	Hélicoptères		À réaction		À pistons		Turbopropulseurs	
Piste	Arrivées	Départs	Arrivées	Départs	Arrivées	Départs	Arrivées	Départs	Arrivées	Départs
	80	2	0	0	0	0	80	2	0	0
06	0,2 %	0,01 %	0 %	0 %	0 %	0 %	1 %	0,02 %	0 %	0 %
0.0	11 660	11 838	329	366	7	7	3 220	3 333	8 104	8 132
08	32 %	32 %	6 %	7 %	39 %	41 %	34 %	35 %	36 %	36 %
0.4	287	355	1	0	0	0	285	354	1	1
24	0,8 %	1 %	0,0 %	0 %	0 %	0 %	3 %	4 %	0,004 %	0,004 %
0.0	20 716	20 713	662	686	11	10	5 777	5 787	14 266	14 230
26	56 %	56 %	13 %	13 %	61 %	59 %	62 %	61 %	64 %	64 %
0.0	4 224	4 273	4 224	4 273	0	0	0	0	0	0
60	11 %	11 %	81 %	80 %	0 %	0 %	0 %	0 %	0 %	0 %
	36 967	37 181	5 216	5 325	18	17	9 362	9 476	22 371	22 363
Total	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %

Le **tableau 3-4** montre les aéronefs utilisés dans les catégories représentées qui sont définies dans le calcul. Les aéronefs ayant réalisé peu de mouvements en 2023 ne figurent pas dans ce tableau, mais on peut trouver la liste détaillée à l'**annexe A**.

Tableau 3-4 Catégories d'aéronefs

Catégories d'aéronefs	Types d'aéronefs
Hélicoptère monomoteur	Robinson R44, etc.
Hélicoptère bimoteur	Agusta Westland AW139, etc.
Monomoteur à pistons	Cessna série 150/172/207, Grob G-115, etc.
Bimoteur à pistons	Piper PA-23/31, etc.
Monomoteur turbopropulseur	Pilatus PC-12, Cessna 208 Caravan, etc.
Bimoteur turbopropulseur	Dash 8-400, etc.
Bimoteur à réaction	IAI 1124, etc.

3.1.3 Corridors aériens

Les corridors aériens des départs, des arrivées et des circuits ont été modélisés à partir de l'information recueillie au moyen du Canada Air Pilot, du Canada Air Pilot restreint, du Supplément de vol Canada, de Porter Airlines et de NAV CANADA. Heli Tours a fourni la position du site d'atterrissage de ses hélicoptères et NAV CANADA a fourni des renseignements sur les corridors aériens des hélicoptères.

O/Réf.: 702490-4E-L02-00

Corridors aériens des départs :

- Piste 08: virage à droite au point de cheminement LODRA (N43 38.31 O79 21.52), cap de 090°.
- Piste 26: virage à gauche à 800 ASL, au point de cheminement EMDOS (N43 31.08 O79 19.28).

Surfaces d'approche :

Pistes 06, 08 et 24 : 3,5°:

Piste 26: 3,5° ou 3,98°.

Les pistes 24 et 26 présentent des circuits à gauche alors que les pistes 06 et 08 ont des circuits à droite.

3.2 Résultats

La figure 3-4 montre les courbes d'ambiance sonore de l'aéroport en fonction des mouvements réels de 2023, ce qui comprend les hélicoptères, ainsi que les courbes NEF de 1990. Les courbes NEF de 1990 ont été préparées en avril 1978 par l'Administration canadienne du transport aérien du ministère des Transports, pour la Société canadienne d'hypothèques et de logement. Les courbes d'ambiance sonore qui ne tiennent pas compte des hélicoptères sont présentées à la figure 3-5.

L'accord impose une limite quant à l'expansion des courbes NEF. En effet, l'article 27 exige que la courbe NEF 28 actuelle ne s'étende pas au-delà de la courbe NEF 25 officielle de 1990, sauf entre les points X et Y. Si la courbe NEF 28 se prolonge au-delà de la courbe NEF 25 officielle de 1990, les mouvements des aéronefs doivent être contrôlés de manière à ramener la courbe NEF 28 à l'intérieur de la courbe NEF 25 officielle de 1990.

L'analyse montre que la courbe NEF 28 pour 2023, qui comprend les hélicoptères dans le calcul, ne s'étend pas audelà de la courbe NEF 25 officielle de 1990.

Lorsque les hélicoptères sont exclus du calcul, les courbes NEF rétrécissent légèrement et ne s'étendent pas au-delà de la courbe NEF 25 officielle de 1990.

O/Réf.: 702490-4E-L02-00

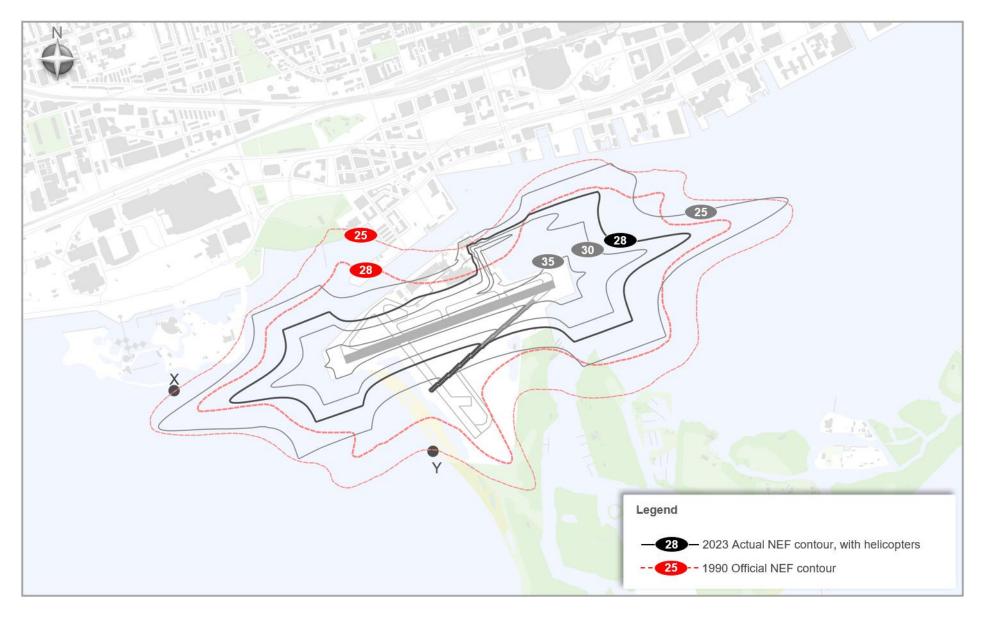


Figure 3-4 Courbes NEF avec hélicoptères

O/Réf.: 702490-4E-L02-00

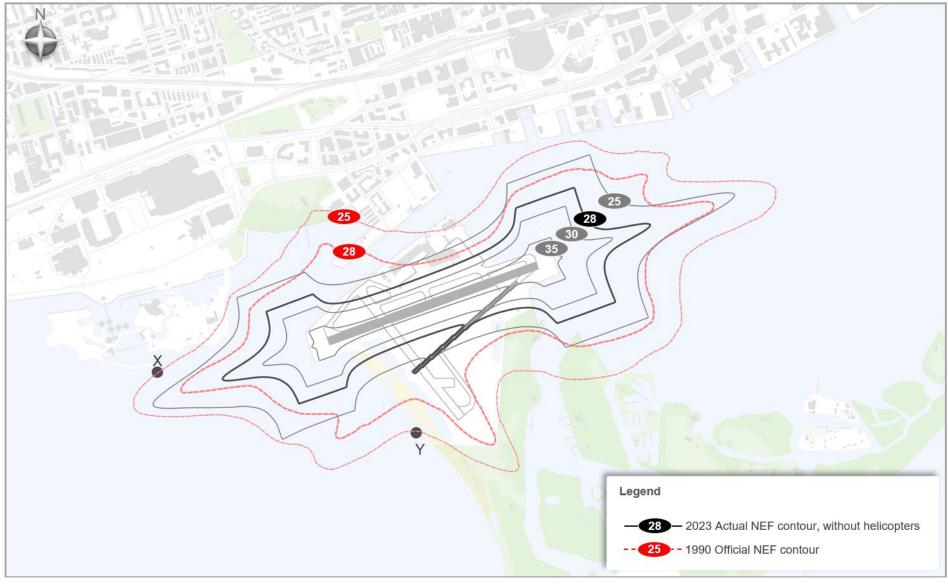


Figure 3-5 Courbes NEF sans hélicoptères

O/Réf.: 702490-4E-L02-00

Le **tableau 3-5** présente la superficie à l'intérieur des courbes de 2022. Il s'agit de la superficie totale à l'intérieur de chaque plage des valeurs NEF.

Tableau 3-5 Superficie (km²)

NEE	Superficie (km²)						
NEF	Avec hélicoptères	Sans hélicoptères					
35 +	0,2	0,2					
30 - 35	0,5	0,4					
28 - 30	0,3	0,3					
25 - 28	0,9	0,9					
Total	1,9	1,8					

4. Conclusion

Les courbes d'ambiance sonore de 2023 de l'aéroport ont été calculées conformément à la méthodologie de Transports Canada. On a également pris en compte la superficie à l'intérieur des courbes. Ces courbes couvrent une superficie totale de 1,9 kilomètre carré (km²) avec hélicoptères, et de 1,8 km² sans hélicoptères. La courbe NEF 28 couvre une superficie de 0,9 km² avec hélicoptères, et de 0,9 km² sans hélicoptères.

La courbe NEF 28 de 2023, avec hélicoptères, ne s'étend pas au-delà de la courbe NEF 25 officielle de 1990, qui représente la limite établie dans l'accord pour l'expansion de la courbe NEF.

Lorsque les hélicoptères sont exclus du calcul, les courbes NEF rétrécissent légèrement et ne s'étendent pas au-delà de la courbe NEF 25 officielle de 1990.

5. Bibliographie

ORGANISATION DE L'AVIATION CIVILE INTERNATIONALE, Normes et pratiques recommandées internationales, Annexe 16 à la Convention relative à l'aviation civile internationale, Protection de l'environnement, Volume 1 – Bruit des aéronefs, 8e édition, 2017.

TRANSPORTS CANADA, Groupe Aviation, « NEF micro computer system user manual », juin 1990, TP 6907.

TRANSPORTS CANADA, « Utilisation des terrains au voisinage des aérodromes », 9e édition, 2013-2014, TP 1247.

TRANSPORTS CANADA, « Indicatifs de la circulation aérienne », TP 143, 2009.

FAA, département des Transports des États-Unis, Circulaire d'information, « Noise Levels for U.S. Certified and Foreign Aircraft », 2001.

O/Réf.: 702490-4E-L02-00

ANNEXES

Annexe A. Composition de la flotte

Aéronef	D1*	D2*	D3*	D4*	MTOW	Fabricant	Modèle	Équivalent	Numéro
A109	L	2	Т	R	3 000	AGUSTA	A-109, Power	B222	6
A139	М	2	Т	R	6 400	AGUSTA/WESTLAND	AW-139	BH12/CH135MAN	2 421
AA5	ш	1	Р	F	1 000	AMERICAN	AA-5 Traveler	GASEPF	39
AC11	L	1	Р	R	2 000	ROCKWELL	112, 114 Commander, Alpine Commander	RWCM14	26
AC90	L	2	Т	R	5 000	ROCKWELL	690 Turbo Commander, Jetprop Commander 840	RWCM69	4
AC95	L	2	Т	R	6 000	ROCKWELL	695 Jetprop Commander 980/1000	RWCM69	2
AEST	ш	2	Р	R	3 000	PIPER	PA-60, Aerostar	PA60	6
AS50	L	1	Т	F	3 000	AEROSPATIALE	AS-350/550 Ecureuil, Astar, SuperStar, Fennec	AS350	17
AS55	L	2	Т	F	3 000	AEROSPATIALE	AS-355/555 Ecureuil 2, TwinStar, Fennec	B222	2
B06	L	1	Т	F	2 000	BELL	206A/B/L, 406, LongRanger (CH-139 JetRanger)	BH06MAN	35
B190	М	2	Т	R	8 000	BEECH	1900 Airliner (C-12J)	BEC190	263
B350	М	2	Т	R	6 000	BEECH	B300 Super King Air 350	DHC6	532
B412	L	2	Т	F	6 000	BELL	412, Griffon (CH-146)	BH12/CH135MAN	1
B427	L	2	Т	F	3 000	BELL	427	B222	4
B429	L	2	Т	F	3 175	BELL	GlobalRanger	B222	31
B767	Н	2	J	R	160 000	BOEING COMPANY	Boeing 767	767JT9	1
BE10	L	2	Т	R	6 000	BEECH	100 King Air (U-21F)	BEC100	182
BE18	L	2	Р	R	4 000	BEECH	18 (C-45 Expeditor)	BEC18	2
BE19	L	1	Р	F	1 000	BEECH	19 Musketeer Sport, Sport	GASEPF	3
BE20	L	2	Т	R	6 000	BEECH	200, 1300 Super King Air, Commuter (C-12A)	BEC200	162
BE23	L	1	Р	F	2 000	BEECH	23 Musketeer, Sundowner	GASEPF	20
BE24	L	1	Р	R	2 000	BEECH	24 Musketeer Super, Sierra	GASEPF	18
BE30	М	2	Т	R	7 000	BEECH	300 Super King Air	BEC300	40
BE33	L	1	Р	R	2 000	BEECH	33 Bonanza (E-24)	BEC33	6
BE35	L	1	Р	R	2 000	BEECH	35 Bonanza	GASEPV	49

Aéronef	D1*	D2*	D3*	D4*	MTOW	Fabricant	Modèle	Équivalent	Numéro
BE36	L	1	Р	R	2 000	BEECH	36 Bonanza	GASEPV	34
BE55	L	2	Р	R	3 000	BEECH	55 Baron (T-42)	BEC55	6
BE58	L	2	Р	R	3 000	BEECH	58 Baron	BEC58	26
BE60	L	2	Р	R	4 000	BEECH	60 Duke	BEC60	2
BE9L	L	2	Т	R	5 000	BEECH	90, A90-E90 King Air (T- 44, VC-6)	BEC90	194
BEAR	L	1	Р	F	1 100	BEARHAWK	Bearhawk	GASEPF	2
BL8	L	1	Р	F	2 000	BELLANCA	8 Decathlon, Scout	GASEPF	76
C140	L	1	Р	F	1 000	CESSNA	140	CNA150	2
C150	L	1	Р	F	1 000	CESSNA	150, A150, Commuter, Aerobat	CNA150	15 461
C152	L	1	Р	F	1 000	CESSNA	152, A152, Aerobat	CNA152	2 242
C170	L	1	Р	F	1 000	CESSNA	170	CNA170	2
C172	L	1	Р	F	2 000	CESSNA	172, P172, R172, Skyhawk, Cutlass (T-41)	CNA172	18 227
C177	L	1	Р	F	2 000	CESSNA	177, Cardinal	CNA177	7
C180	L	1	Р	F	2 000	CESSNA	180, Skywagon 180 (U- 17C)	CNA180	53
C182	L	1	Р	F	2 000	CESSNA	182, Skylane	CNA182	571
C185	L	1	Р	F	2 000	CESSNA	185, A185 Skywagon, Skywagon 185 (U-17A/B)	CNA185	102
C195	L	1	Р	F	2 000	CESSNA	195 (LC-126)	GASEPV	2
C206	Г	1	Р	F	2 000	CESSNA	206, P206, T206, TP206, (Turbo) Super Skywagon	CNA206	430
C207	L	1	Р	F	2 000	CESSNA	207 (Turbo) Stationair	CNA207	1 060
C208	٦	1	Т	F	4 000	CESSNA	208 Caravan 1, (Super)Cargomaster (C- 98, U-27)	CNA208	458
C210	L	1	Р	R	2 000	CESSNA	210, T210, (Turbo)Centurion	CNA210	25
C240	L	1	Р	F	1 600	CESSNA	TTx T240	GASEPV	10
C310	L	2	Р	R	3 000	CESSNA	310, T310 (U-3, L-27)	CNA310	62
C337	L	2	Р	R	2 000	CESSNA	337, M337 (Turbo)Super Skymaster (O-2)	CNA337	22
C340	L	2	Р	R	3 000	CESSNA	340	CNA340	32

Aéronef	D1*	D2*	D3*	D4*	MTOW	Fabricant	Modèle	Équivalent	Numéro
C414	L	2	Р	R	3 000	CESSNA	414, Chancellor	CNA414	27
C421	L	2	Р	R	4 000	CESSNA	421, Golden Eagle, Executive Commuter	CNA421	4
C425	L	2	Τ	R	4 000	CESSNA	425 Corsair, Conquest 1	CNA425	2
C441	L	2	Т	R	5 000	CESSNA	441 Conquest, Conquest 2	CNA441	8
C510	L	2	J	R	6 000	CESSNA AIRCRAFT CO.	Citation Mustang	CNA500	1
C72R	L	1	Р	R	2 000	CESSNA	172RG Cutlass RG	GASEPV	2
C77R	L	1	Р	R	2 000	CESSNA	177RG Cardinal RG	CNA17B	11
C82R	L	1	Р	R	2 000	CESSNA	R182, TR182 (Turbo) Skylane RG	CNA182	12
CH65	L	1	Р	F	600	ZODIAC	Zodiac CH 650	GASEPF	2
СН7А	L	1	Р	F	2 000	CHAMPION	7EC/ECA/FC/JC Citabria, Traveler, Tri-Con, Tri- Traveler	GASEPF	6
СН7В	L	1	Р	F	2 000	BELLANCA	7GCBC/KCAB Citabria	BLCH10	6
CNUK	L	1	Р	F	1 000	FLEET	80 Canuck	GASEPF	1
COL3	L	1	Р	F	1 500	Lancair	LC40-550FG	BEC58P	2
COL4	L	1	Р	F	1 633	CESSNA AIRCRAFT CO.	400 Corvalis TT	BEC58P	28
DA40	L	1	Р	F	1 800	DIAMOND AIRCRAFT IND INC	DA 40	GASEPF	133
DA42	L	2	Р	R	1 700	DIAMOND	DA42	GASEPV	77
DA62	L	2	Р	R	2 300	DIAMOND	DA62	BEC58P	10
DH84	М	2	Т	R	30 000	BOMBARDIER	DHC-8-402	DHC830	876
DH8C	М	2	Т	R	20 000	DE HAVILLAND	DHC-8-300 Dash 8	DHC830	4
DH8D	М	2	Т	R	26 000	DE HAVILLAND	DHC-8-400 Dash 8	DHC830	39 154
DHC2	L	1	Р	F	3 000	DE HAVILLAND	DHC-2 Mk1 Beaver (U-6, L-20)	DHC2	94
DHC6	L	2	Т	F	6 000	DE HAVILLAND	DHC-6 Twin Otter (CC-138)	DHC6	7
DHC7	М	4	Т	R	20 000	DE HAVILLAND	DHC-7 Dash 7 (O-5, EO-5)	DHC7	1

Aéronef	D1*	D2*	D3*	D4*	MTOW	Fabricant	Modèle	Équivalent	Numéro
DV20	L	1	Р	F	1 000	DIAMOND	DA-20/22, DV-20 Katana, Speed Katana	GASEPF	4
E300	L	1	Р	F	1 000	EXTRA	300, 350	GASEPV	10
EC30	L	1	Т	F	2 400	EUROCOPTER	EC130B4	AS350	75
ECHO	L	1	Р	F	550	TECNAM	P92 Echo	GASEPF	7
EVOL	L	1	Т	R	2 000	LANCAIR	Lancair Evolution	GASEPV	2
EXEJ	L	1	Н	F	680	ROTORWAY	Jetexec	BH06MAN	1
FA10	М	2	J	R	9 000	DASSAULT	Falcon 10, Mystere 10	FAL10	6
FBA2	L	1	Р	F	2 000	FOUND	FBA-2, Bush Hawk	GASEPV	6
G115	L	1	Р	R	2 000	GROB	G-115A/B/C/D/E, Bavarian (Heron, Tutor)	GASEPF	983
GB6T	L	1	Т	А	2 000	BERNIER	G-bair 6T (dérivé de CNA206)	CNA206	16
GLAS	L	1	Р	F	1 088	STODDARD- HAMILTON	(INDICATIF SUPPRIMÉ EN 2005) Glasair	GASEPF	3
GLSP	L	1	Р	F	0	GLASAIR	Sportsman 2+2	GASEPV	1
GYRO	L	1	Р	F	500	AUTOGYRO	AutoGyro MT-03 / MTO sport	GASEPV	2
ÉLEVÉE	L	1	Р	F	700	JUST AIRCRAFT	Highlander	GASEPF	1
HMBD	L	1	Р	F	1 000	HOMEBUILT	Homebuilt	GASEPF	12
HUSK	L	1	Р	F	1 000	CHRISTEN	A-1 Husky	GASEPV	4
KODI	М	1	Т	F	3 290	Quest kodiak	Aéronef Kodiak	CNA20T	4
LA25	L	1	Р	А	2 000	LAKE	LA-250/270 (Turbo)Renegade, Seawolf, Seafury	GASEPF	14
LA4	L	1	Р	Α	2 000	LAKE	LA-4/200, Buccaneer	LA42	2
LNC4	L	1	Р	R	2 000	LANCAIR	Lancair 4	GASEPV	14
LNCE	L	1	Р	F	1 451	LANCAIR	Lancair ES	GASEPV	2
M20P	L	1	Р	R	2 000	MOONEY	M-20, M-20A-J/L/R (non doté de turbocompresseur)	M20J	138
M20T	L	1	Р	R	2 000	MOONEY	M-20K/M, Bravo, Encore (turbo)	M20K	11
M5	L	1	Р	F	2 000	MAULE	M-5, Strata Rocket, Lunar Rocket, Patroller	GASEPF	2

Aéronef	D1*	D2*	D3*	D4*	MTOW	Fabricant	Modèle	Équivalent	Numéro
MO10	L	1	Р	F	1 000	MOONEY AIRCRAFT INC.	Cadet	GASEPV	4
MU2	L	2	Т	R	5 000	MITSUBISHI	MU-2, Marquise, Solitaire (LR-1)	MU2	266
MUS2	L	1	Р	F	725	Mustang	Mustang II	GASEPF	2
NSTR	L	1	Р	F	1 100	CUSTOM FLIGHT	North Star	GASEPF	1
P06T	L	2	Р	R	1 200	TECNAM	P-2006T	GASEPV	1
P180	L	2	Т	R	6 000	PIAGGIO	P-180 Avanti	SD330	10
P210	L	1	Р	R	2 000	CESSNA	P210 Pressurized Centurion	CNA206	22
P28A	L	1	Р	F	2 000	PIPER	PA-28-140/150/160/180 Archer, Cadet, Cherokee	PA28CA	637
P28B	L	1	Р	F	2 000	PIPER	PA-28-201T/235/236 Cherokee, Dakota	PA28CA	87
P28R	L	1	Р	R	2 000	PIPER	PA-28R-180/200/201 Cherokee Arrow, Turbo Arrow	PA28CA	95
P28T	L	1	Р	R	2 000	PIPER	PA-28RT Arrow 4, Turbo Arrow 4	PA28CA	4
P32R	L	1	Р	R	2 000	PIPER	PA-32R Cherokee Lance, Saratoga SP, Turbo	GASEPV	12
P32T	L	1	Р	R	2 000	PIPER	PA-32RT Lance 2, Turbo Lance 2	GASEPV	4
P337	L	2	Р	R	3 000	CESSNA	T337G, P337 Pressurized Skymaster	CNA337	6
P46T	L	1	Т	R	2 000	PIPER	PA-46T Malibu Meridian	PA46	123
P51	L	1	Р	R	5 000	NORTH AMERICAN	P-51, F-51, A-36 Mustang	GASEPV	6
PA22	L	1	Р	F	1 000	PIPER	PA-22 Tri-Pacer, Caribbean, Colt	PA22CO	6
PA23	L	2	Р	R	2 000	PIPER	PA-23-150/160 Apache	PA23AZ	2
PA24	L	1	Р	R	2 000	PIPER	PA-24 Comanche	PA24	39
PA27	L	2	Р	R	3 000	PIPER	PA-23-235/250 Aztec, Turbo Aztec (U-11)	PA23AZ	1,564
PA30	L	2	Р	R	2 000	PIPER	PA-30/39 Twin Comanche, Turbo Twin Comanche	PA30	46

Aéronef	D1*	D2*	D3*	D4*	MTOW	Fabricant	Modèle	Équivalent	Numéro
PA31	L	2	Р	R	4 000	PIPER	PA-31/31P Navajo, Chieftain, Mojave, T-1020	PA31	136
PA32	L	1	Р	F	2 000	PIPER	PA-32 Cherokee Six, Saratoga, Turbo Saratoga	GASEPV	9
PA34	L	2	Р	R	3 000	PIPER	PA-34 Seneca	PA34	26
PA38	L	1	Р	F	1 000	PIPER	PA-38 Tomahawk	PA38	264
PA44	L	2	Р	R	2 000	PIPER	PA-44 Seminole, Turbo Seminole	PA44	10
PA46	L	1	Р	R	2 000	PIPER	PA-46 Malibu, Malibu Mirage	PA46	81
PAY2	L	2	Т	R	5 000	PIPER	PA-31T-620/T2-620 Cheyenne, Cheyenne 2	CNA441	16
PAY3	L	2	Т	R	6 000	PIPER	PA-42-720 Cheyenne 3		
PC12	L	1	Т	R	5 000	PILATUS	PC-12, Eagle	CNA20T	1 710
PTMS	L	1	Р	F	1 000	PITTS	Pitts Model 12	GASEPV	2
PTS2	L	1	Р	F	1 000	PITTS	S-2 Special	GASEPF	8
R44	L	1	Р	F	2 000	ROBINSON	R-44 Astro	HU30	7 758
R66	L	1	Т	F	1 225	Robinson	R66	BH06MAN	118
RV10	L	1	Р	F	1 200	VAN'S	RV-10	GASEPV	10
RV6	L	1	Р	F	1 000	VAN'S	RV-6	GASEPF	26
RV7	L	1	Р	F	815	VAN'S	RV-7	GASEPV	10
RV8	L	1	Р	F	815	VAN'S	RV-8	GASEPF	4
RV9	L	1	Р	F	793	VAN'S	RV9/9A	GASEPF	2
S108	L	1	Р	F	2 000	STINSON	108 Voyager, Station Wagon	GASEPF	2
S76	L	2	Т	R	5 000	SIKORSKY	S-76, H-76, AUH-76, Spirit, Eagle (HE-24)	S76	72
SLG4	L	1	Р	F	900	SLING AIRCRAFT	Sling 4	GASEPV	4
SR20	L	1	Р	F	2 000	CIRRUS	SR-20	GASEPF	33
SR22	L	1	Р	F	1 500	CIRRUS	SR22	GASEPF	822
SW3	М	2	Т	R	6 000	FAIRCHILD SWEARINGEN	SA-226TB, SA-227TT Merlin 3	SAMER3	8
SW4	М	2	Т	R	7 000	FAIRCHILD SWEARINGEN	Merlin 4C, Metro2/2A, Metro 3, Metro 3A, Expediter, Merlin 23, 4	SAMER4	631

Aéronef	D1*	D2*	D3*	D4*	MTOW	Fabricant	Modèle	Équivalent	Numéro
T18	L	1	Р	F	800	THROP	Throp T-18	GASEPV	3
ТВМ7	Ш	1	Т	R	3 000	SOCATA	TBM-700	CNA441	76
ТВМ8	Ш	1	Т	R	7 400	Socata	TBM850	CNA441	32
ТВМ9	Ш	1	Т	R	3 300	SOCATA	TBM 900	CNA441	13
ТОВА	Ш	1	Р	F	2 000	AEROSPATIALE	Tobago	GASEPF	4
WW24	М	2	J	R	11 000	IAI	1124 Westwind, Westwind 1/2, Sea Scan	IA1124	27
YK50	L	1	Р	R	1 000	YAKOVLEV	Yak-50	GASEPV	9

*D1 : Poids : *D2 : Nombre de moteurs *D4 : Train d'atterrissage :

*D3 : Type de moteur : P – pistons T – turbopropulseurs L – léger M – moyen F – fixe R – amovible H – lourd J – à réaction A – amphibien

Annexe B. Résumé des mouvements

Résumé des mouvements itinérants de la flotte

Aáronof		Arrivées			Total			
Aéronef	Jour	Nuit	Nuit Total		Nuit	Total	Total	
Hélicoptère monomoteur	4 032	0	4 032	3 951	22	3 973	8 005	
Hélicoptère bimoteur	1 101	83	1 184	1 292	60	1 352	2 536	
Bimoteur à réaction	17	1	18	15	2	17	35	
Monomoteur à pistons	8 703	120	8 823	8 832	96	8 928	17 751	
Bimoteur à pistons	536	2	538	540	8	548	1 086	
Quadrimoteur à pistons	1	0	1	0	0	0	1	
Monomoteur turbopropulseur	1 134	15	1 149	1 087	57	1 144	2 293	
Bimoteur turbopropulseur	20 725	497	21 222	20 493	725	21 218	42 440	
Quadrimoteur turbopropulseur	0	0	0	1	0	1	1	
Total	36 249	718	36 967	36 211	970	37 181	74 148	

Jour: De 7 h à 22 hNuit: De 22 h à 7 h

Utilisation des pistes - Arrivées

Aáranat	0	06 08		24		26		60		
Aéronef	Jour	Nuit	Jour	Nuit	Jour	Nuit	Jour	Nuit	Jour	Nuit
Hélicoptère monomoteur			9				3		4 020	
Hélicoptère bimoteur			295	25	1		605	54	200	4
Bimoteur à réaction			7				10	1		
Monomoteur à pistons	80		2 975	43	283	2	5 365	75		
Bimoteur à pistons			201	1			335	1		
Quadrimoteur à pistons							1			
Monomoteur turbopropulseur			433	5			701	10		
Bimoteur turbopropulseur			7 490	176	1		13 234	321		
Total	80	0	11 410	250	285	2	20 254	462	4 220	4

Utilisation des pistes - Départs

A śwawa s	0	6 08		В	24		26		60	
Aéronef	Jour	Nuit	Jour	Nuit	Jour	Nuit	Jour	Nuit	Jour	Nuit
Hélicoptère monomoteur			6				1		3 944	22
Hélicoptère bimoteur			348	12			644	41	300	7
Bimoteur à réaction			7				8	2		
Monomoteur à pistons	2		3 105	33	353		5 372	63		
Bimoteur à pistons			190	5	1		349	3		
Monomoteur turbopropulseur			381	21	1		705	36		
Bimoteur turbopropulseur			7 468	262			13 025	463		
Quadrimoteur turbopropulseur							1			
Total	2	0	11 505	333	355	0	20 105	608	4 244	29

AtkinsRéalis

AtkinsRéalis

455, boul. René-Lévesque Ouest Montréal (Québec) H2Z 1Z3

© AtkinsRéalis Sauf indication contraire